Suomen ympäristökeskus
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: ISO/TC 147/SC 3
(Radioactivity measurements)
Alkuperä: ISO
Määräpäivä: 2026-02-13
This document specifies a test method for the determination of gross beta activity concentration in non-saline waters. The method covers non-volatile radionuclides with maximum beta energies of approximately 0,3 MeV or higher. Measurement of low-energy beta emitters (e.g. 3H, 228Ra, 210Pb, 14C, 35S and 241Pu) and some gaseous or volatile radionuclides (e.g. radon and radioiodine) are not be included in the gross beta quantification using the test method described in this document. This test method is applicable to the analysis of raw and drinking waters with low amounts of total soluble salts in the water. Limit of detection depends on the performance characteristics (background count rate and counting efficiency) of the counter used. It is the laboratory’s responsibility to ensure the suitability of this method for the water samples tested. As this method requires sample preparation in laboratory facilities, it is not suited for rapid, in-the-field analysis.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: CEN/TC 230
(Water analysis)
Alkuperä: CEN
Määräpäivä: 2026-02-19
This document sets out the general principles for, and provides guidance on, the design of sampling programmes and sampling techniques for all aspects of sampling of water (including waste waters, sludges, effluents, suspended solids and sediments).
This document does not include detailed instructions for specific sampling situations, which are covered in various other parts of the ISO 5667 series and in ISO 19458.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: ISO/TC 147/SC 6
(Sampling (general methods))
Alkuperä: ISO
Määräpäivä: 2026-02-20
This document sets out the general principles for, and provides guidance on, the design of sampling programmes and sampling techniques for all aspects of sampling of water (including waste waters, sludges, effluents, suspended solids and sediments).
This document does not include detailed instructions for specific sampling instructions, which are covered in various other parts of the ISO 5667 series and in ISO 19458 [1].
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: CEN/TC 230
(Water analysis)
Alkuperä: CEN
Määräpäivä: 2026-02-23
This document provides the information needed to assess the condition over time of a unionid population, and the level of information for assessing whether a plan or project may be detrimental to their future prospects. It provides guidance on methods for survey and monitoring unionid mussel populations and the environmental characteristics important for maintaining populations in favourable condition. The document is based on best practice developed and used by unionid mussel experts in Europe, and describes approaches that individual countries have adopted for survey, data analysis and condition assessment.
Standard methods for restoring populations are not within the scope of this document.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 4
(Biological characterization)
Alkuperä: ISO
Määräpäivä: 2026-02-24
This document specifies a chronic test method for evaluating the habitat function of soils and determining effects of soil contaminants and substances on the reproduction of Hypoaspis (Gaeolaelaps) aculeifer. This method is applicable to soils and soil materials of unknown quality, e.g. from contaminated sites, amended soils, soils after remediation, industrial, agricultural or other sites under concern and waste materials (e.g. dredged material, municipal sludge from a wastewater treatment plant, composed material, or manure, especially those for possible land disposal). The reproduction (= number of juveniles) is the measured parameter of the test. The test reflects the bioavailability of a mixture of contaminants in natural soils (contaminated site soils) to a species which represents a trophic level which is not covered by other ISO standards. This test is not intended to replace the earthworm (see ISO 11268-2[2]) or Collembola (see ISO 11267[1]) reproduction tests since this species belongs not only to a different trophic group but also a different taxonomic group (= mites; i.e. arachnids) than those used usually.
Effects of substances are assessed using a standard soil, preferably a defined artificial soil substrate. For contaminated soils, the effects are determined in the soil to be tested and in a control soil. Depending on the objective of the study, the control and dilution substrate (dilution series of contaminated soil or waste material) are either an uncontaminated soil comparable to the soil to be tested (reference soil) or a standard soil (e.g. artificial soil).
This document provides information on how to use this method for testing samples (soils or substances) under temperate conditions.
This document is not applicable to substances for which the air/soil partition coefficient is greater than one, or to substances with vapour pressure exceeding 300 Pa at 25 °C.
NOTE The stability of the test substance cannot be ensured over the test period. No provision is made in the test method for monitoring the persistence of the substance under test.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 4
(Biological characterization)
Alkuperä: ISO
Määräpäivä: 2026-02-24
This document is one of a family of International Standards providing guidance on soils and soil materials in relation to certain functions and uses including conservation of biodiversity. It applies in conjunction with these other standards. It provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil dwelling organisms.
NOTE This is a reflection of the maintenance of the habitat and retention function of the soil. In fact, the methods listed in this document are suitable for usage in a TRIAD approach, i.e. for an ecological assessment of potentially contaminated soils (see Reference [18]).
This document does not cover tests for bioaccumulation.
The ecological assessment of uncontaminated soils with a view to natural, agricultural or horticultural use is not within the scope of this document. Such soils can be of interest if they can serve as a reference for the assessment of soils from contaminated sites (see References [29], [30] and [33]).
The interpretation of results gained by applying the proposed methods is not in the scope of this document.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: CEN/TC 444
(Environmental characterization of solid matrices)
Alkuperä: CEN
Määräpäivä: 2026-02-26
This document specifies a chronic test method for evaluating the habitat function of soils and determining effects of soil contaminants and substances on the reproduction of Hypoaspis aculeifer by ? mainly ? alimentary uptake. This method is applicable to soils and soil materials of unknown quality, e.g. from contaminated sites, amended soils, soils after remediation, industrial, agricultural or other sites under concern and waste materials (e.g. dredged material, municipal sludge from a wastewater treatment plant, composed material, or manure, especially those for possible land disposal). The reproduction (= number of juveniles) is the measured parameter of the test. The test reflects the bioavailability of a mixture of contaminants in natural soils (contaminated site soils) to a species which represents a trophic level which is not covered by other ISO standards. This test is not intended to replace the earthworm (see ISO 11268-2) or Collembola (see ISO 11267) reproduction tests since this species belongs not only to a different trophic group but also a different taxonomic group (= mites; i.e. arachnids) than those used usually.
Effects of substances are assessed using a standard soil, preferably a defined artificial soil substrate. For contaminated soils, the effects are determined in the soil to be tested and in a control soil. Depending on the objective of the study, the control and dilution substrate (dilution series of contaminated soil) are either an uncontaminated soil comparable to the soil to be tested (reference soil) or a standard soil (e.g. artificial soil).
This document provides information on how to use this method for testing samples (soils or substances) under temperate conditions.
This document is not applicable to substances for which the air/soil partition coefficient is greater than one, or to substances with vapour pressure exceeding 300 Pa at 25 °C.
NOTE The stability of the test substance cannot be ensured over the test period. No provision is made in the test method for monitoring the persistence of the substance under test.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: CEN/TC 444
(Environmental characterization of solid matrices)
Alkuperä: CEN
Määräpäivä: 2026-02-26
This document is one of a family of International Standards providing guidance on soils and soil materials in relation to certain functions and uses including conservation of biodiversity. It applies in conjunction with these other standards. It provides guidance on the selection of experimental methods for the assessment of the ecotoxic potential of soils and soil materials (e.g. excavated and remediated soils, refills, embankments) with respect to their intended use and possible adverse effects on aquatic and soil dwelling organisms.
NOTE This is a reflection of the maintenance of the habitat and retention function of the soil. In fact, the methods listed in this document are suitable for usage in a TRIAD approach, i.e. for an ecological assessment of potentially contaminated soils (see ISO 19204).
This document does not cover tests for bioaccumulation.
The ecological assessment of uncontaminated soils with a view to natural, agricultural or horticultural use is not within the scope of this document. Such soils can be of interest if they can serve as a reference for the assessment of soils from contaminated sites.
The interpretation of results gained by applying the proposed methods is not in the scope of this document.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: ISO/TC 190
(Soil quality)
Alkuperä: ISO
Määräpäivä: 2026-03-06
This document gives an overview and provides guidance on the main methods available to quantify the exchanges of greenhouse gases (CO2, N2O, CH4) and ammonia (NH3) between soils and the atmosphere.
It is intended to help users to select the measurement method or methods most suited to their purposes by setting out information on the application domain and the main advantages and limitations of each methods.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: CEN/TC 230
(Water analysis)
Alkuperä: CEN
Määräpäivä: 2026-03-20
This document specifies the general requirements for the in vitro amplification of nucleic acid sequences (DNA or RNA). This includes polymerase chain reaction (PCR)-based methods like quantitative PCR, qualitative PCR, reverse transcription-PCR and digital PCR.
The minimum requirements laid down in this document are intended to ensure that comparable and reproducible results are obtained in different organizations. It covers quality assurance aspects to be considered when working with PCR-based methods in a laboratory as well as validation and verification.
In addition to laboratory PCR-based methods, this document is also applicable to on-site PCR-based
methods.
This document is applicable to PCR-based methods used for the analysis of microorganisms and viruses in different water matrices, including but not limited to:
— drinking water;
— groundwater;
— pool water;
— process water;
— surface water;
— wastewater.
This document is applicable to the detection and quantification of nucleic acids (DNA or RNA) of microorganisms by PCR-based methods in water such as bacteria, yeasts, fungi but also parasites such as Cryptosporidium, Giardia, amoebas and multicellular organisms. In addition, this document is applicable to the detection and quantification of nucleic acids from viruses in water by PCR-based methods.
NOTE In the context of this document, viruses are considered to be microorganisms. Clauses in this document can also specifically apply to viruses and not to other types of microorganisms. In these clauses, viruses are mentioned separately.
Toimialayhteisö:
Suomen ympäristökeskus
Komitea: CEN/TC 230
(Water analysis)
Alkuperä: CEN
Määräpäivä: 2026-04-07
This document is applicable to lakes, which are water bodies occupying one or more basins with surface areas typically greater than 1 ha (0,01 km2) and maximum depths (at mean water level) greater than 1 m. All types of permanent and temporary lakes, including natural, modified and artificial, freshwater and brackish, except for those systems which regularly connect to the sea, are included in this document.
Based on these criteria, it can be estimated that there are at least 500 000 natural lakes across Europe, most of which are located in the glaciated landscapes in northern and western provinces and in Scandinavia. Lakeland districts also occur locally in areas such as large river catchments (e.g. the Danubian plain) and around the Alps. Elsewhere, naturally occurring lakes are relatively sparse and in such areas reservoirs or pits are more common.
This document is designed to:
a) support environmental and conservation agencies in meeting the monitoring requirements of the WFD (Article 8, Annex II and Annex V);
b) generate data sets appropriate for monitoring and reporting of Natura 2000 sites designated under the Habitats Directive and the Birds Directive;
c) provide information supporting other environmental reporting requirements (e.g. in relation to biodiversity or environmental impact assessment);
d) support lake management and restoration initiatives.
This document:
e) defines the key term of ‘hydromorphology’ and other terms relating to the morphological characteristics of lakes and their hydrological regimes;
f) details essential features and processes of lakes that should be characterized as part of a hydromorphological survey and for determining the hydromorphological condition of a lake;
g) identifies and defines the key pressures affecting European lakes;
h) provides guidance on strategies for collecting hydromorphological data depending on resources available and the anticipated use of the assessment; a hierarchy of approaches is recognized from the ‘overview method’ utilizing existing databases, maps and remote sensing data through to recognized field-based survey techniques such as Lake Habitat Survey (LHS) [3];
i) offers guidance on data presentation;
j) establishes guidance on data quality assurance issues.
This document does not deal with biological assessments in lakes such as the presence or absence of individual species or community composition, nor does it attempt to link specific hydromorphological features with their associated biological communities or to create a classification based on such links. However, it is relevant where plants or other organisms form significant structural elements of the habitat (e.g. a gradation from riparian to littoral vegetation).
With respect to the WFD, the hydromorphological condition of a lake only contributes to its status classification at high ecological status (HES). Hydromorphological conditions are not defined for good and moderate status but shall be sufficient to support the biological elements. However, some countries are now beginning to classify lakes according to their hydromorphology. The information gathered by using this standard can provide a basis for classification, but this classification is the subject of EN 16870 and not EN 16039.