Suomen ympäristökeskus

Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 275 (Sludge recovery, recycling, treatment and disposal)
Alkuperä: ISO
Määräpäivä: 2024-09-09
LaajennaSupista
 
The standard will characterize and outline the range of public perceptions and reactions to the beneficial uses of treated sewage sludge (biosolids) and provides descriptions of and steps in risk communication methods intended obtain the recognition and support of interested parties for such beneficial uses. Although primarily intended for land applications of biosolids, the standard may be used for risk communication related to other beneficial uses of biosolids or of similar material.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 3 (Chemical and physical characterization)
Alkuperä: ISO
Määräpäivä: 2024-09-10
LaajennaSupista
 
This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment: Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), caesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb), yttrium (Y), zinc (Zn), and zirconium (Zr). The working range depends on the matrix and the interferences encountered. The method detection limit of the method is between 0,1 mg/kg dry matter and 2,0 mg/kg dry matter for most elements. The limit of detection will be higher in cases where the determination is likely to be interfered (see Clause 4) or in case of memory effects (see e.g. EN ISO 17294-1). The method has been validated for the elements given in Table A.1 (sludge), Table A.2 (compost) and Table A.3 (soil). The method is applicable for the other elements listed above, provided the user has verified the applicability. This method is also applicable for the determination of major, minor and trace elements in aqua regia and nitric acid digests and in eluates of construction products (EN 17200)[2].
Toimialayhteisö: Suomen ympäristökeskus
Komitea: CEN/TC 444 (Environmental characterization of solid matrices)
Alkuperä: CEN
Määräpäivä: 2024-09-12
LaajennaSupista
 
This document specifies a method for the determination of the following elements in aqua regia, nitric acid or mixture of hydrochloric (HCl), nitric (HNO3) and tetrafluoroboric (HBF4)/hydrofluoric (HF) acid digests of soil, treated biowaste, waste, sludge and sediment using inductively coupled plasma mass spectrometry (ICP-MS): Aluminium (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), bismuth (Bi), boron (B), cadmium (Cd), calcium (Ca), cerium (Ce), cesium (Cs), chromium (Cr), cobalt (Co), copper (Cu), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), holmium (Ho), indium (In), iridium (Ir), iron (Fe), lanthanum (La), lead (Pb), lithium (Li), lutetium (Lu), magnesium (Mg), manganese (Mn), mercury (Hg), molybdenum (Mo), neodymium (Nd), nickel (Ni), palladium (Pd), phosphorus (P), platinum (Pt), potassium (K), praseodymium (Pr), rhenium (Re), rhodium (Rh), rubidium (Rb), ruthenium (Ru), samarium (Sm), scandium (Sc), selenium (Se), silicon (Si), silver (Ag), sodium (Na), strontium (Sr), sulfur (S), tellurium (Te), terbium (Tb), thallium (Tl), thorium (Th), thulium (Tm), tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium (V), ytterbium (Yb), yttrium (Y), zinc (Zn), and zirconium (Zr). The working range depends on the matrix and the interferences encountered. The method detection limit of the method is between 0,1 mg/kg dry matter and 2,0 mg/kg dry matter for most elements. The limit of detection will be higher in cases where the determination is likely to be interfered or in case of memory effects
Toimialayhteisö: Suomen ympäristökeskus
Komitea: CEN/TC 230 (Water analysis)
Alkuperä: CEN
Määräpäivä: 2024-09-12
LaajennaSupista
 
This document is concerned with the assessment of fish survival in pumping stations and hydropower plants, defined as the fraction of fish that passes an installation without significant injury. It does not concern indirect consequences of such installations, usually included in the notions ‘fish safety’ or ‘fish-friendliness’, like avoidance of fish affecting migration, behavioural changes, injury during attempted upstream passage, temporary stunning of fish resulting in potential predation, or depleted oxygen levels. This document applies to pumps and turbines in pumping stations and hydropower plants that operate in or between bodies of surface water, in rivers, in streams or estuaries containing resident and/or migratory fish stocks. Installations include centrifugal pumps (radial type, mixed-flow type, axial type), Archimedes screws, and water turbines (Francis type, Kaplan type, Bulb type, Straflo type, etc.). The following methods to assess fish survival are described: — Survival tests involving the paired release of live fish, introduced in batches of test and control fish upstream and downstream of an installation, and the subsequent recapture in full-flow collection nets. The method is applicable to survival tests in the field and in a laboratory environment. (Clause 6); — A validated model-based computational method consisting of a blade encounter model and correlations that quantify the biological response to blade strike (Clause 7). The computational method can be used to scale results from laboratory fish survival tests to full-scale installations operating under different conditions (Clause 8). The survival tests and computational method can also be applied to open-water turbines, with the caveats mentioned in Annex C. The results of a survival test or a computed estimation can be compared with a presumed maximum sustainable mortality rate for a given fish population at the site of a pumping station or hydropower plant. However, this document does not define these maximum rates allowing to label a machine as “fish-friendly”, nor does it describe a method for determining such a maximum. This document offers an integrated method to assess fish survival in pumping stations and hydropower plants by fish survival tests and model-based calculations. It allows (non-)government environmental agencies to evaluate the impact on resident and migratory fish stocks in a uniform manner. Thus the document will help to support the preservation of fish populations and reverse the trend of declining migratory fish stocks. Pump and turbine manufacturers will benefit from the document as it sets uniform and clear criteria for fish survival assessment. Further, the physical model that underlies the computational method in the document, may serve as a tool for new product development. To academia and research institutions, this document represents the baseline of shared understanding. It will serve as an incentive for further research in an effort to fill the omissions and to improve on existing assessment methods.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 275 (Sludge recovery, recycling, treatment and disposal)
Alkuperä: ISO
Määräpäivä: 2024-09-18
LaajennaSupista
 
This Document specifies a method for the determination of the gross calorific value of sludge at constant volume and at the reference temperature 25 °C in a bomb calorimeter calibrated by combustion of certified benzoic acid. The result obtained is the gross calorific value of the sample at constant volume with both the water of the combustion products and the moisture of the sludge as liquid water. In practice, sludge are burned at constant (atmospheric) pressure and the water is not condensed but is removed as vapour with the flue gases. Under these conditions, the operative heat of combustion to be used is the net calorific value of the fuel at constant pressure. In this document the net calorific value at constant volume is described as it requires less additional determinations. This method is applicable to all kinds of sludge.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 4 (Biological characterization)
Alkuperä: ISO
Määräpäivä: 2024-09-23
LaajennaSupista
 
This document specifies test procedures for the determination of effects of contaminated soils or other contaminated samples on the emergence of lettuce seeds. This document is applicable to contaminated soils, soil materials, compost, sludge and chemical testing. It is also applicable to the measurement of effects of substances deliberately added to the soil and to the comparison of soils of known and unknown quality. This document is not applicable for volatile contaminants.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 7 (Impact assessment)
Alkuperä: ISO
Määräpäivä: 2024-10-01
LaajennaSupista
 
This document establishes general principles for packing, preservation, transport and delivery of samples of soil and related materials with an emphasis on requirements for when chemical analysis of the samples is required, but with the intention that the general procedures are to be adapted as appropriate when other forms of testing are required (e.g. biological testing, physical tests on disturbed or undisturbed samples). Special procedures for specific sampling purposes are given in other parts of ISO 18400 (see also 7.2). This document is intended to be read in conjunction with ISO 18512.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 3 (Chemical and physical characterization)
Alkuperä: ISO
Määräpäivä: 2024-10-07
LaajennaSupista
 
This document specifies a method for the determination of the potential cation exchange capacity (CEC) of soil buffered at pH = 8,1 and for the determination of the content of exchangeable sodium, potassium, calcium and magnesium in soil. This document is applicable to all types of air-dried soil samples.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 3 (Chemical and physical characterization)
Alkuperä: ISO
Määräpäivä: 2024-10-16
LaajennaSupista
 
This document specifies methods for the calculation of the dry matter fraction of sludge, sludge products, treated biowaste, soil and waste for which the results of performed analysis are to be calculated to the dry matter basis. Depending on the nature and origin of the sample, the calculation is based on a determination of the dry residue (Method A) or a determination of the water content (Method A & B). It applies to samples containing more than 1 % (mass fraction) of dry residue or more than 1 % (mass fraction) of water. Method A applies to sludge, sludge products, treated biowaste, soil and solid waste. Method B applies to liquid waste and to samples which are suspected or known to contain volatiles except for water.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: CEN/TC 444 (Environmental characterization of solid matrices)
Alkuperä: CEN
Määräpäivä: 2024-10-17
LaajennaSupista
 
The method specified can be applied to all types of soil samples. Different procedures are specified for air-dried soil samples, e.g. samples pretreated according to ISO 11464, and for field-moist soil samples. Its principle is drying soil samples to constant mass at 105 °C and using the difference in mass of an amount of soil before and after the drying procedure to calculate the dry matter and water contents on a mass basis. For the determination of soil water content on a volume basis, refer to ISO 11461.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: CEN/TC 444 (Environmental characterization of solid matrices)
Alkuperä: CEN
Määräpäivä: 2024-10-17
LaajennaSupista
 
ISO 17601:2016 specifies the crucial steps of a quantitative real-time polymerase chain reaction (qPCR) method to measure the abundance of selected microbial gene sequences from soil DNA extract which provides an estimation of selected microbial groups. It is noteworthy that the number of genes is not necessarily directly linked to the number of organisms that are measured. For example, the number of ribosomal operon is ranging from one copy to 20 copies in different bacterial phyla. Therefore, the number of 16S rRNA sequences quantified from soil DNA extracts does not give an exact estimate of the number of soil bacteria. Furthermore, the number of sequences is not necessarily linked to living microorganisms and can comprise sequences amplified from dead microorganisms.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 4 (Biological characterization)
Alkuperä: ISO
Määräpäivä: 2024-10-17
LaajennaSupista
 
This International Standard specifies the crucial steps of a quantitative real-time polymerase chain reaction (qPCR) method to measure the abundance of selected microbial gene sequences from soil DNA extract which provides an estimation of selected microbial groups. It is noteworthy that the number of genes is not necessarily directly linked to the number of organisms that are measured. For example, the number of ribosomal operon is ranging from one copy to 20 copies in different bacterial phyla. Therefore, the number of 16S rRNA sequences quantified from soil DNA extracts does not give an exact estimate of the number of soil bacteria. Furthermore, the number of sequences is not necessarily linked to living microorganisms and can comprise sequences amplified from dead microorganisms. A list of currently well established qPCR Assays to assess selected functional traits of the soil microbiome is listed in Annex C.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: CEN/TC 230 (Water analysis)
Alkuperä: CEN
Määräpäivä: 2024-10-24
LaajennaSupista
 
This document specifies a method for the sampling and laboratory preparation of benthic diatoms for ecological status and water quality assessments. The sampling and preparation procedures described can be used for later investigations using either light microscopy or molecular methods. Data produced by this method are suitable for production of indices based on the relative abundance of taxa. Analysis using molecular methods is not within the scope of the document.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: CEN/TC 230 (Water analysis)
Alkuperä: CEN
Määräpäivä: 2024-10-24
LaajennaSupista
 
This document provides guidance on characterizing the modifications of river hydromorphological features described in EN 14614:2020. Both standards focus more on morphology than on hydrology and continuity, and include a consideration of sediment and vegetation. This document will enable consistent comparisons of hydromorphological forms and processes between rivers within a country and between different countries in Europe, providing guidance for broad-based characterization across a wide spectrum of hydromorphological modification of river channels, banks, riparian zones and floodplains. Although of lesser focus, it considers the indirect effects of catchment-wide modifications to these river and floodplain environments. Its primary aim is to assess ‘departure from naturalness’ as a result of historical and modern human pressures on river hydromorphology, and it suggests suitable sources of information (see EN 14614:2020, Table A.1) which may contribute to characterizing the modification of hydromorphological properties. In doing so, it does not replace methods that have been developed for local assessment and reporting. Decisions on river management for individual reaches or catchments require expert local knowledge and vary according to river type.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 3 (Chemical and physical characterization)
Alkuperä: ISO
Määräpäivä: 2024-11-05
LaajennaSupista
 
This International Standard specifies a method for the quantitative determination of the mineral oil (hydrocarbon) (C10 to C40) content in soil and waste samples by gas chromatography. The method is applicable to mineral oil contents (mass fraction) between 100 mg/kg and 10 000 mg/kg soil, expressed as dry matter, and can be adapted to lower limits of detection. Using this standard all hydrocarbons with a boiling range of approximately 175 °C to 525 °C, e.g. n-alkanes from C10H22 to C40H82, isoalkanes, cycloalkanes, alkyl benzenes, alkyl naphthalenes and polycyclic aromatic compounds are determined as hydrocarbons, provided they do not adsorb on the Florisil column during clean-up. The standard can also be applied to determine any fraction in-between the range n-C10 to n-C40. Volatile hydrocarbons cannot be quantitatively determined using this standard. This will affect the determination of some common hydrocarbon fuels, e.g. petrol.
Toimialayhteisö: Suomen ympäristökeskus
Komitea: ISO/TC 190/SC 3 (Chemical and physical characterization)
Alkuperä: ISO
Määräpäivä: 2024-11-05
LaajennaSupista
 
Toimialayhteisö: Suomen ympäristökeskus
Komitea: CEN/TC 444 (Environmental characterization of solid matrices)
Alkuperä: CEN
Määräpäivä: 2024-11-07
LaajennaSupista
 
ISO 16703:2004 specifies a method for the quantitative determination of the mineral oil (hydrocarbon) content in field-moist soil samples by gas chromatography. The method is applicable to mineral oil contents (mass fraction) between 100 mg/kg and 10 000 mg/kg soil, expressed as dry matter, and can be adapted to lower detection limits. ISO 16703:2004 is applicable to the determination of all hydrocarbons with a boiling range of 175 °C to 525 °C, n-alkanes from C10H22 to C40H82, isoalkanes, cycloalkanes, alkylbenzenes, alkylnaphthalenes and polycyclic aromatic compounds, provided that they are not absorbed on the specified column during the clean-up procedure. ISO 16703:2004 is not applicable to the quantitative determination of hydrocarbons < C10 originating from gasolines. On the basis of the peak pattern of the gas chromatogram obtained, and of the boiling points of the individual n-alkanes listed in Annex B, the approximate boiling range of the mineral oil and some qualitative information on the composition of the contamination can be achieved.