SFS Suomen Standardit

Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 248 (Textiles and textile products)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
ISO 6940:2004 specifies a method for the measurement of ease of ignition of vertically oriented textile fabrics and industrial products in the form of single or multi-component fabrics (coated, quilted, multilayered, sandwich constructions, and similar combinations), when subjected to a small, defined flame. This method assesses the properties of textile fabrics in response to flame contact under controlled conditions.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 248 (Textiles and textile products)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
ISO 6941:2003 specifies a method for the measurement of flame spread times of vertically oriented textile fabrics and industrial products in the form of single or multi-component fabrics (coated, quilted, multilayered, sandwich combinations, and similar combinations) when subjected to a small, defined flame.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 307 (Oilseeds, vegetable and animal fats and oils and their by-products - Methods of sampling and analysis)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
This International Standard specifies a rapid method for the determination of the oil and water contents of commercial oilseeds using pulsed nuclear magnetic resonance (NMR). It is applicable to rapeseeds, soya beans, linseeds and sunflower seeds with a water content less than 10 %. For seeds with higher water contents, drying is necessary before the oil content can be determined by pulsed NMR. NOTE 1 This method has been tested with rapeseeds, soya beans, linseeds and sunflower seeds. This does not, however, preclude its applicability to other commercial seeds whose oil is liquid at the temperature of measurement. NOTE 2 The reproducibility values are generally higher than those obtained by the drying method (ISO 665)
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 234 (Gas infrastructure)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
This document covers the functional recommendations for the design, construction, testing, commissioning, operation, maintenance and abandonment of the surface facilities for underground gas storage (UGS), between the wellhead and the connection to the gas grid. It specifies practices which are safe and environmentally acceptable. For necessary subsurface facilities for underground storage, the relevant part of EN 1918 1 to EN 1918 4 applies. In this context, “gas” refers to flammable gas: — which is in a gaseous state at a temperature of 15 °C and under a pressure of 0,1 MPa. The stored product is also named fluid. — which meets specific quality requirements in order to maintain underground storage integrity, performance, environmental compatibility and fulfils contractual requirements. This comprises: — gas not in liquid phase under subsurface conditions: — methane-rich gases; — natural gas; — biomethane; — synthetic methane; — hydrogen of various purities; — any mixtures of the gases above; — hydrocarbon gas in liquid phase under subsurface conditions such as: — ethylene; — liquified petroleum gas (LPG). NOTE 1 Correspondingly the EN 1918 series can be considered where applicable for underground storage of any other fluid e.g. helium, carbon dioxide, compressed air, rDME (renewable dimethyl ether) and hydrogen transport fluids (such as ammonia and LOHC). This document is not intended to be applied retrospectively to existing facilities. NOTE 2 Correspondingly this document can be considered for major conversions in case of significant change of gas composition.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 234 (Gas infrastructure)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
This document covers the functional recommendations for design, construction, testing, commissioning, operation, maintenance and abandonment of underground gas storage (UGS) facilities in oil and gas fields up to and including the wellhead. It specifies practices which are safe and environmentally acceptable. For necessary surface facilities for underground gas storage, EN 1918 5 applies. In this context “gas” refers to flammable gas: — which is in a gaseous state at a temperature of 15 °C and under a pressure of 0,1 MPa (the stored product is also named fluid); — which meets specific quality requirements in order to maintain underground storage integrity, performance, environmental compatibility and fulfils contractual requirements. This comprises: — gas not in liquid phase under subsurface conditions; — methane-rich gases; — natural gas; — biomethane; — synthetic methane; — hydrogen of various purities; — any mixtures of the gases above; — hydrocarbon gas in liquid phase under subsurface conditions such as; — ethylene; — liquified petroleum gas (LPG). NOTE 1 Correspondingly the EN 1918 series can be considered where applicable for underground storage of any other fluid e.g. helium, carbon dioxide, compressed air, rDME (renewable dimethyl ether) and hydrogen transport fluids (such as ammonia and LOHC). This document is not intended to be applied retrospectively to existing facilities. NOTE 2 Correspondingly this document can be considered for major conversions in case of significant change of gas composition.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 234 (Gas infrastructure)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
This document covers the functional recommendations for design, construction, testing, commissioning, operation, maintenance and abandonment of underground gas storage (UGS) facilities in solution-mined salt caverns up to and including the wellhead. It specifies practices which are safe and environmentally acceptable. For necessary surface facilities for underground gas storage, EN 1918 5 applies. In this context “gas” refers to flammable gas: — which is in a gaseous state at a temperature of 15 °C and under a pressure of 0,1 MPa (the stored product is also named fluid); — which meets specific quality requirements in order to maintain underground storage integrity, performance, environmental compatibility and fulfils contractual requirements. This comprises: — gas not in liquid phase under subsurface conditions; — methane-rich gases; — natural gas; — biomethane; — synthetic methane; — hydrogen of various purities; — any mixtures of the gases above; — hydrocarbon gas in liquid phase under subsurface conditions such as; — ethylene; — liquified petroleum gas (LPG). NOTE 1 Correspondingly the EN 1918 series can be considered where applicable for underground storage of any other fluid e.g. helium, carbon dioxide, compressed air, rDME (renewable dimethyl ether) and hydrogen transport fluids (such as ammonia and LOHC). This document is not intended to be applied retrospectively to existing facilities. NOTE 2 Correspondingly this document can be considered for major conversions in case of significant change of gas composition.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 234 (Gas infrastructure)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
This document covers the functional recommendations for design, construction, testing, commissioning, operation, maintenance and abandonment of underground gas storage (UGS) facilities in mined rock caverns up to and including the wellhead. This document specifies practices which are safe and environmentally acceptable. For necessary surface facilities for underground gas storage, EN 1918 5 applies. In this context, “gas” refers to flammable gas: — which is in a gaseous state at a temperature of 15 °C and under a pressure of 0,1 MPa (the stored product is also named fluid); — which meets specific quality requirements in order to maintain underground storage integrity, performance, environmental compatibility and fulfils contractual requirements. This comprises: — gas not in liquid phase under subsurface conditions; — methane-rich gases; — natural gas; — biomethane; — synthetic methane; — hydrogen of various purities; — any mixtures of the gases above; — hydrocarbon gas in liquid phase under subsurface conditions such as; — ethylene; — liquified petroleum gas (LPG). NOTE 1 Correspondingly the EN 1918 series can be considered where applicable for underground storage of any other fluid e.g. helium, carbon dioxide, compressed air, rDME (renewable dimethyl ether) and hydrogen transport fluids (such as ammonia and LOHC). Gases that are liquid in subsurface conditions are not considered in this document. This document is not intended to be applied retrospectively to existing facilities. NOTE 2 Correspondingly this document can be considered for major conversions in case of significant change of gas composition.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 234 (Gas infrastructure)
Alkuperä: CEN
Määräpäivä: 2025-07-31
LaajennaSupista
 
This document covers the functional recommendations for design, construction, testing, commissioning, operation, maintenance and abandonment of underground gas storage (UGS) facilities in aquifers up to and including the wellhead. It specifies practices, which are safe and environmentally acceptable. For necessary surface facilities for underground gas storage, EN 1918 5 applies. In this context “gas” refers to flammable gas: — which is in a gaseous state at a temperature of 15 °C and under a pressure of 0,1 MPa (the stored product is also named fluid); — which meets specific quality requirements in order to maintain underground storage integrity, performance, environmental compatibility and fulfils contractual requirements. This comprises: — gas not in liquid phase under subsurface conditions; — methane-rich gases; — natural gas; — biomethane; — synthetic methane; — hydrogen of various purities; — any mixtures of the gases above; — hydrocarbon gas in liquid phase under subsurface conditions such as; — ethylene; — liquified petroleum gas (LPG). NOTE 1 Correspondingly the EN 1918 series can be considered where applicable for underground storage of any other fluid e.g. helium, carbon dioxide, compressed air, rDME (renewable dimethyl ether) and hydrogen transport fluids (such as ammonia and LOHC). This document is not intended to be applied retrospectively to existing facilities. NOTE 2 Correspondingly this document can be considered for major conversions in case of significant change of gas composition.
Toimialayhteisö: SFS Suomen Standardit
Komitea: ISO/TC 28 (Petroleum and related products, fuels and lubricants from natural or synthetic sources)
Alkuperä: ISO
Määräpäivä: 2025-08-05
LaajennaSupista
 
This document specifies a laboratory method for the determination of the distillation characteristics of light and middle distillates derived from petroleum and related products of synthetic or biological origin with initial boiling points above 0 °C and end-points below approximately 400 °C, utilizing either manual or automated equipment. Light distillates are typically automotive engine petrol, automotive engine ethanol fuel blends with up to 85 % (V/V) ethanol,[4] and aviation petrol. Middle distillates are typically aviation turbine fuel, kerosene, diesel, diesel with up to 30 % (V/V) FAME, burner fuel, and marine fuels that have no appreciable quantities of residua. The distillation (volatility) characteristics of hydrocarbons and related products of synthetic or biological origin have an important effect on their safety and performance, especially in the case of fuels and solvents. The boiling range gives important information on composition and behaviour during storage and use, and the rate of evaporation is an important factor in the application of many solvents. Limiting values to specified distillation characteristics are applied to most distillate petroleum product and liquid fuel specifications in order to control end-use performance and to regulate the formation of vapours which may form explosive mixtures with air, or otherwise escape into the atmosphere as emissions (VOC).
Toimialayhteisö: SFS Suomen Standardit
Komitea: ISO/IEC JTC 1/SC 38 (Cloud computing and distributed platforms)
Alkuperä: ISO
Määräpäivä: 2025-08-05
LaajennaSupista
 
Toimialayhteisö: SFS Suomen Standardit
Komitea: SFS (SFS Suomen Standardit)
Alkuperä: SFS
Määräpäivä: 2025-08-05
LaajennaSupista
 
Standardi tekstiilien hoito-ohjeisiin liittyvistä sanallisista ohjeista on uusittu, ja tämä uusi painos korvaa 3. painoksen SFS 5236:2016.
 
Standardi SFS 5236 sisältää hoito-ohjemerkkien yleisimmin tarvittavat sanalliset ohjeet ja niiden vastineet ruotsin, englannin, saksan ja ranskan kielillä. Tämä standardi koskee kaikkia tekstiilituotteita lukuun ottamatta
— pehmustettujen huonekalujen ei-irrotettavia päällisiä
— ei-irrotettavia patjansuojia
— ammattimaista pesua vaativia mattoja ja kokolattiamattoja.
Symbolien käyttö on Suomessa ja useissa muissa maissa luvanvaraista ja ellei lupaa ole hankittu, hoito-ohje tulee antaa sanallisesti. Suomessa myytävissä tuotteissa sanallisten ohjeiden on oltava suomen ja ruotsin kielellä. Sanalliset ohjeet ovat tarpeen myös silloin, kun halutaan kertoa kuluttajalle joistakin tuotteen erikoisominaisuuksista tai varoittaa joistain hoitoon liittyvistä asioista. Sanallisissa ohjeissa saa käyttää muitakin tekstejä ja niiden muodostamisessa voi käyttää apuna tätä standardia.
 
Ota kantaa, tulisiko tämä standardiehdotus vahvistaa SFS-standardiksi. Voit myös kommentoida ehdotusta. Kommentit käsittelee SFS:n työryhmä SFS/TR 009 "Tekstiilien hoito-ohje".
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 440 (Electronic Public Procurement)
Alkuperä: CEN
Määräpäivä: 2025-08-06
LaajennaSupista
 
The purpose of this deliverable is to define and describe the reference architecture applied as the basis for the development of Business Interoperability Interface specifications in the eProcurement domain by the CEN/TC 440 technical committee.
Toimialayhteisö: SFS Suomen Standardit
Komitea: ASD-STAN (Aerospace)
Alkuperä: CEN
Määräpäivä: 2025-08-07
LaajennaSupista
 
This document specifies methods for measuring the characteristic impedance of a cable and is based on EN 50289-1-11.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 234 (Gas infrastructure)
Alkuperä: CEN
Määräpäivä: 2025-08-07
LaajennaSupista
 
This document specifies requirements on the development and implementation of a Safety Management System (SMS) and a Pipeline Integrity Management System (PIMS). The SMS is applicable for system operators of a gas infrastructure. The PIMS is applicable for system operators of gas infrastructure with a maximum operating pressure (MOP) over 16 bar. This document refers to all activities and processes related to safety aspects and performed by system operators of a gas infrastructure, including those activities entrusted to contractors. It includes safety-related provisions on operation of the gas infrastructure. This document is applicable to infrastructure for the conveyance of processed, non-toxic and non-corrosive natural gas according to EN ISO 13686 and gases such as biomethane and hydrogen and to mixtures of these gases with natural gas. This document covers also gases classified as group H, that are to be transmitted, injected into and from storages, distributed and utilized, as specified in EN 16726. For the requirements and test methods for biomethane at the point of entry into a natural gas network, reference is made to EN 16723-1. This document can be applied for gas infrastructure conveying gases of the 3rd gas family as classified in EN 437 or for other gases such as carbon dioxide. Specific requirements for occupational health and safety are excluded from this document. For these, other European and/or international standards, e.g. ISO 45001, apply. This document specifies common basic principles for gas infrastructure. It is important that users of this document are expected to be aware that more detailed national standards and/or codes of practice exist in the CEN member countries. This document is intended to be applied in association with these national standards and/or codes of practice setting out the above-mentioned basic principles. In the event of conflicts in terms of more restrictive requirements in national legislation/regulation with the requirements of this document, the national legislation/regulation takes precedence as illustrated in CEN/TR 13737 (all parts). NOTE CEN/TR 13737 (all parts) contains: - clarification of relevant legislation/regulations applicable in a country; - if appropriate, more restrictive national requirements; - national contact points for the latest information.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 234 (Gas infrastructure)
Alkuperä: CEN
Määräpäivä: 2025-08-07
LaajennaSupista
 
This document describes the functional requirements for pipelines for maximum operating pressure over 16 bar. This document also describes the mechanical requirements for pipework in stations with a maximum operating pressure greater than 16 bar. NOTE 1 Welding requirements are described in EN 12732. Functional requirements for stations are given in EN 1776, EN 1918-5, EN 12186, and EN 12583. This document is applicable for transporting gas via onshore high-pressure steel pipeline infrastructures, where the following applies: - onshore: - from the point where the pipeline first crosses what is normally accepted as battery limit between onshore and offshore, and that is not located within commercial or industrial premises as an integral part of the industrial process on these premises except for any pipelines and facilities supplying such premises; - pipeline system with a starting point onshore, also when parts of the pipeline system on the mainland subsequently cross fjords, lakes, etc. - high pressure: gas with a maximum operating pressure over 16 bar and a design temperature between -40 °C and 120 °C. - steel pipeline infrastructure: infrastructure consisting of pipeline components, such as pipes, valves, couplings and other equipment, restricted to components made of unalloyed or low alloyed carbon steel and joined by welds, flanges or mechanical couplings. - gas: non-corrosive natural gas, biomethane gas, hydrogen gas and mixtures of these gases where technical evaluation has ensured that operating conditions or constituents or properties of the gas do not affect the safe operation of the pipeline. Gas infrastructures covered by this document begin after the gas producer's metering station. NOTE 2 The functional demarcation of the pipeline system is usually directly after an isolating valve of the installation, but can differ in particular situations. The functional demarcation of the pipeline system is usually located on an isolating valve of the installation, but can differ in particular situations. A schematic representation of pipelines for gas infrastructure is given in Figure 1. This document can also be applied to the repurposing of existing pipelines. [Figure 1 - Schematic representation of pipelines for gas supply over 16 bar] This document specifies common basic principles for gas infrastructure. Users of this standard are expected to be aware that more detailed national standards and/or code of practice can exist in the CEN member countries. This document is intended to be applied in association with these national standards and/or codes of practice setting out the above-mentioned basic principles. In the event of conflicts in terms of more restrictive requirements in national legislation/regulation with the requirements of this standard, the national legislation/regulation takes precedence as illustrated in CEN/TR 13737. CEN/TR 13737 gives: - clarification of all legislations/regulations applicable in a member state; - if appropriate, more restrictive national requirements; - a national contact point for the latest information.
Toimialayhteisö: SFS Suomen Standardit
Komitea: ASD-STAN (Aerospace)
Alkuperä: CEN
Määräpäivä: 2025-08-07
LaajennaSupista
 
This document specifies the minimum requirements for the qualification, acceptance, delivery and inspection of standard parts by the aerospace industry and its manufacturers. This document is valid for standard parts and their assemblies as described in a product standard, if mentioned therein. This specification can also be applied to other parts when specifically invoked by the terms of delivery. Parts/sections of this document are not applicable in cases where the product standard stipulates requirements that differ from this specification.
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 289 (Leather)
Alkuperä: CEN
Määräpäivä: 2025-08-07
LaajennaSupista
 
This document specifies a method for the determination of melamine in chemicals used in the tanning industry
Toimialayhteisö: SFS Suomen Standardit
Komitea: CEN/TC 19 (Gaseous and liquid fuels, lubricants and related products of petroleum, synthetic and biological origin)
Alkuperä: CEN
Määräpäivä: 2025-08-07
LaajennaSupista
 
This document specifies a laboratory method for the determination of the distillation characteristics of light and middle distillates derived from petroleum and related products of synthetic or biological origin with initial boiling points above 0 °C and end-points below approximately 400 °C, utilizing either manual or automated equipment. Light distillates are typically automotive engine petrol, automotive engine ethanol fuel blends with up to 85 % (V/V) ethanol, and aviation petrol. Middle distillates are typically aviation turbine fuel, kerosene, diesel, diesel with up to 30 % (V/V) FAME, burner fuel, and marine fuels that have no appreciable quantities of residua. NOTE For the purposes of this document, the term "% (V/V)" is used to represent the volume fraction of a material. The distillation (volatility) characteristics of hydrocarbons and related products of synthetic or biological origin have an important effect on their safety and performance, especially in the case of fuels and solvents. The boiling range gives important information on composition and behaviour during storage and use, and the rate of evaporation is an important factor in the application of many solvents. Limiting values to specified distillation characteristics are applied to most distillate petroleum product and liquid fuel specifications in order to control end-use performance and to regulate the formation of vapours which may form explosive mixtures with air, or otherwise escape into the atmosphere as emissions (VOC).