Toimialayhteisöt

Komitea: ISO/TC 184/SC 5 (Interoperability, integration, and architectures for enterprise systems and automation applications)
Alkuperä: ISO
Määräpäivä: 2026-03-16
LaajennaSupista
 
This document defines terms relating to supply chain interoperability and integration. These terms are used by standards developed in the ISO 25500 series for Supply Chain Interoperability and Integration.
Komitea: ISO/TC 184/SC 5 (Interoperability, integration, and architectures for enterprise systems and automation applications)
Alkuperä: ISO
Määräpäivä: 2026-03-16
LaajennaSupista
 
To verify trading entity identity data with the authoritative source, this document specifies the requirements for formatting requests and replies to request types: verify, resolve, and search. The following are within the scope of this document: — terms related to international business registration numbers (IBRNs) and international business identifiers (IBIDs) and the dataset used for verification of trading entities — the syntax requirements and application protocol interface (API) for a request and response to a request for the verification of an IBID to verify trading entity identity data (verify) — the syntax requirements and API for a request and reply to the request for resolution of an IBID or IBRN to other data associated with the trading entity (resolve) — the syntax requirements and API for a request and response to a request to search for an IBID, IBRN, or authoritative legal entity identifier (ALEI) given a legal name (search) The following are outside the scope of this document: — the methods used for the resolution of IBIDs and IBRNs by the register that issued the ALEI
Toimialayhteisö: SFS Suomen Standardit
Komitea: ISO/IEC JTC 1/SC 29 (Coding of audio, picture, multimedia and hypermedia information)
Alkuperä: ISO
Määräpäivä: 2026-03-16
LaajennaSupista
 
Toimialayhteisö: Väylävirasto
Komitea: ISO/TC 182 (Geotechnics)
Alkuperä: ISO
Määräpäivä: 2026-03-16
LaajennaSupista
 
This document specifies the procedure for determining bulk, dry and grain densities as well as open porosity of a rock specimen using the immersion method and a combination of the linear method and gas pycnometry. This document is applicable to the laboratory determination of density and open porosity of a rock test specimen within the scope of geotechnical investigations. Other methods for determining the bulk mass, grain mass, bulk volume and grain volume of the specimen that fulfil the requirements set in this document may also be considered acceptable (Annex B). Used method should be chosen based on the use case (type of specimen, availability etc.). Bulk, dry and grain density as well as open porosity are determined for the specimen as is and are dependent on fluid content, which shall be determined and reported as per ISO 16383-1. NOTE This document fulfils the requirements of the determination of bulk density of rock for geotechnical investigation and testing in accordance with EN 1997-2 (2024).
Komitea: ISO/TC 121/SC 1 (Breathing attachments and anaesthetic machines)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
Komitea: ISO/TC 204 (Intelligent transport systems)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This part of ISO 15638 provides the following for cooperative telematics applications for regulated commercial freight vehicles (4.37): a) A framework (4.20) for the provision of cooperative telematics application services for regulated commercial freight vehicles; b) A description of the concept of operation, regulatory aspects and options and the role models; c) A conceptual architecture (4.7) using an on-board unit and wireless communications to a regulator (4.25) or its agent; d) References for the key documents on which the architecture (4.7) is based; e) Details of the architecture (4.7) of the Facilities Layer; f) A taxonomy of the organisation of generic procedures; g) Common terminology for the ISO 15638 family of standards. This part of ISO 15638 is based on a (multiple) service provider (4.39) oriented approach. ISO 15638 has been developed for use in the context of regulated commercial freight vehicles. There is nothing however to prevent a jurisdiction extending or adapting the scope to include other types of regulated vehicles, as it deems appropriate. NOTE The specific ‘approval’ procedures for specific application services are a matter for the jurisdiction (4.24) and are outside the scope of this (or any) part of 15638. However, approval authorities (4.6) are encouraged to use the guidance of ISO 17000 and ISO/IEC 17065:2012 when developing and implementing such procedures.
Toimialayhteisö: Muoviteollisuus
Komitea: ISO/TC 138/SC 5 (General properties of pipes, fittings and valves of plastic materials and their accessories -- Test methods and basic specifications)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This document specifies a test method to determine if a fitting will fail in crushing mode under compression before a predefined percentage deformation of moulded fittings for thermoplastics piping systems and recommends a specification (see annex A). It applies to fittings made from unplasticized poly(vinyl chloride) (PVC-U), high-impact poly(vinyl chloride) (PVC-HI), chlorinated poly(vinyl chloride)(PVC-C), polyethylene(PE), polypropylene(PP), Acrylonitrile-butadiene-styrene (ABS), Poly (vinylidene difluoride) (PVDF),and poly(phenyl sulfone)(PPSU). It can be applied to moulded fittings made from other thermoplastics as well. However, the test conditions should be taken into consideration.
Toimialayhteisö: Muoviteollisuus
Komitea: ISO/TC 138/SC 5 (General properties of pipes, fittings and valves of plastic materials and their accessories -- Test methods and basic specifications)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
In general terms, Miner’s rule is a common approach to calculate how the accumulation of a specific load that varies over time effects the time until failure. This international standard specifies the application of Miner’s rule for calculating the design time until failure of plastics pipes and piping systems of plastics materials under varying, but known, load conditions. Miner’s rule can also be applied reciprocally to calculate the tolerable load levels along a desired design time. This international standard specifies particularly the application of Miner’s rule to calculate stress or pressure regimes, respectively, that are tolerable during a targeted design time for plastics or composite pipes. Further, the application of Miner’s rule on the effect of accumulated damage on polyolefins caused by oxidative attack under varying temperatures and times on the design life is specified. It is necessary to apply Miner's rule to each failure mechanism separately. Thus, for mechanical failure due to internal pressure, other failure mechanisms, such as oxidative or dehydrochlorinative degradative failure mechanisms, are to be neglected (assuming, of course, no interaction). A material may be used only when it is proven to conform to all failure mechanism criteria. NOTE Miner's rule is an empirically based procedure and is only a first approximation to reality.
Komitea: ISO/TC 160 (Glass in building)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
ISO 20492-1 specifies two methods for testing the durability of edge seals of insulating glass units by means of climate tests: the final frost/dew point method and the moisture-penetration index method. This document is applicable to pre-assembled, permanently sealed, insulating glass units with one or two cavities, and with capillary tubes that are intentionally left open to equalize pressure inside the unit with the surrounding atmosphere. This document is not applicable to sealed, insulating glass units that contain a spandrel glass coating. This document does not apply to insulating glass (IG) units whose function is decorative only.
Komitea: ISO/TC 160 (Glass in building)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This document establishes two methods for testing the resistance to fogging of pre-assembled, permanently sealed insulating glass units or insulating glass units with capillary tubes intentionally left open. This document is not applicable to sealed, insulating glass units containing a spandrel glass coating due to testing limitations. This document does not apply to insulating glass (IG) units whose function is decorative only.
Komitea: ISO/TC 160 (Glass in building)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This document specifies two methods of test for insulating glass units, including a determination of the gas leakage rate and a determination of gas concentration tolerances. This document is applicable to pre-assembled, permanently sealed, insulating glass units with one or two cavities. It is not applicable to insulating glass units with capillary or breather tubes.
Toimialayhteisö: Kemesta
Komitea: ISO/TC 197 (Hydrogen technologies)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This document provides guidance for the design, manufacture, and testing of pressure vessels to meet the performance criteria at the time of installation for the stationary storage of gaseous hydrogen. Pressure vessels fabricated of seamless metallic or welded construction (Type 1) or of composite construction (Types 2, 3, 4), regardless of reinforcement (metallic or non-metallic), are covered by this standard. This standard can be applied to pressure receptacles as defined in iso:pub:std:FDIS:79732ISO 10286:2021within the volume and pressure limits provided below. This document is not applicable to pressure vessels used for: a) solid storage matrix for hydrogen, b) liquid hydrogen, c) hybrid cryogenic high-pressure hydrogen storage applications, d) or on-board vehicle storage. This document is not applicable to closures, valves, fittings, plugs or external piping.
Toimialayhteisö: Kemesta
Komitea: ISO/TC 197/SC 1 (Hydrogen at scale and horizontal energy systems)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This document describes methodologies that can be applied to estimate the greenhouse gas (GHG) emissions associated with the conditioning, storage and transport of gaseous and liquid hydrogen up to the consumption gate. GHG emissions from cradle to gate (well-to-consumption gate) in the hydrogen supply chain can be assessed by combining iso:proj:88686ISO/DIS 19870-1, which defines methodologies for determining the GHG emissions associated with various pathways of hydrogen production, with this document. ISO 14044 [3] requires the goal and scope of a life cycle assessment (LCA) be clearly defined and be consistent with the intended application. Due to the iterative nature of LCA, it is possible that the LCA scope needs to be refined during the study. According to ISO 14040:2006 [4], Annex A2, the goals and scope of LCAs correspond to one of the following two approaches: a) an approach that assigns elementary flows and potential environmental impacts to a specific product system, typically as an account of the history of the product (see 4.1.2); b) an approach that studies the environmental consequences of possible (future) changes between alternative product systems (see 4.1.3). In this document, approach a) is referred to as an attributional approach, while approach b) is referred to as consequential approach. Complementary information is accessible in the ILCD handbook[5]. A carbon footprint of a product or partial CFP as defined by iso:proj:71206ISO 14067 can be estimated using either the attributional or the consequential approach, the latter corresponding to the use of “system expansion via substitution” to avoid allocation when a unit process yields multiple co-products.
Toimialayhteisö: Kemesta
Komitea: ISO/TC 197/SC 1 (Hydrogen at scale and horizontal energy systems)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This document describes methodologies that can be applied to estimate the greenhouse gas (GHG) emissions associated with the production of ammonia, its storage and transport, and the conversion of ammonia into hydrogen. The transport of hydrogen from the ammonia cracking facility to any delivery point up to the hydrogen consumption gate is covered in ISO 19870-2 (see Figure 2). This document describes in the annexes the requirements and evaluation methods applied to several ammonia production pathways of interest. It also describes the requirements and evaluation methods applied to several ammonia cracking pathways of interest. This document considers the GHG emissions associated with ammonia production up to the delivery gate. This document applies to and includes every steps from ammonia production to any ammonia delivery gate and to ammonia cracking. ISO 14044 requires the goal and scope of an LCA to be clearly defined and be consistent with the intended application. Due to the iterative nature of LCAs, it is possible that the LCA scope needs to be refined during the study. The goals and scopes of the methodologies correspond to either approach a) or b), given below, that iso:proj:37456ISO 14040:2006, Annex A2 gives as two possible approaches to LCAs. a) An approach that assigns elementary flows and potential environmental impacts to a specific product system, typically as an account of the history of the product. See 4.1.2. b) An approach that studies the environmental consequences of possible (future) changes between alternative product systems. See 4.1.3. In this document, approach (a) is referred to as an attributional approach, while approach (b) is referred to as a consequential approach. Complementary information is accessible in the ILCD handbook [1]. A Carbon Footprint of a Product or Partial Carbon Footprint of a Product as defined by ISO 14067 may be estimated using either the attributional or the consequential approach, the latter corresponding to the use of “system expansion via substitution” to avoid allocation when a unit process yields multiple co-products. Complementary documents in the ISO 19870-X series will consider hydrogen production and other conditioning, conversion and transport methods.
Komitea: ISO/TC 160 (Glass in building)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
ISO 20492-4 specifies methods for testing the edge seal strength, and partially testing the water and gas permeation through sealants, of glass insulating units. Other parts of ISO 20492 designate two approaches to the standardization of insulating glass units. The methods in ISO 20492-4 are applicable only to approach 2, as defined and used in the other parts of ISO 20492. In cases where there is no protection against direct ultraviolet radiation at the edges, such as structural sealant glazing systems, it is necessary that additional European technical specifications be followed. See References [4] and [5].
Toimialayhteisö: SFS Suomen Standardit
Komitea: ISO/IEC JTC 1/SC 17 (Cards and security devices for personal identification)
Alkuperä: ISO
Määräpäivä: 2026-03-17
LaajennaSupista
 
This part of ISO/IEC 7816 specifies the power and signal structures, and information exchange between an integrated circuit card and an interface device such as a terminal. It also covers signal rates, voltage levels, current values, parity convention, operating procedure, transmission mechanisms and communication with the card. It does not cover information and instruction content, such as identification of issuers and users, services and limits, security features, journaling and instruction definitions.
Toimialayhteisö: SFS Suomen Standardit
Komitea: ISO/TC 215 (Health informatics)
Alkuperä: ISO
Määräpäivä: 2026-03-18
LaajennaSupista
 
This document defines the top-level semantic architecture of Traditional Chinese Medicine (TCM) informatics as a discipline. It establishes a unified framework for representing and organizing TCM knowledge — including theoretical concepts, diagnostic reasoning, treatment principles, and related terminology — in a form understandable to both humans and computer systems. The framework incorporates a categorial structure to formalize the relationships among concepts and knowledge entities within TCM, providing the semantic basis for data interoperability, knowledge sharing, and computational reasoning. It supports consistent exchange and integration of TCM information across clinical documentation, research databases, education systems, and AI-driven decision-support applications.
Komitea: ISO/TC 204 (Intelligent transport systems)
Alkuperä: ISO
Määräpäivä: 2026-03-18
LaajennaSupista
 
This document specifies procedures and data exchange format interface(s) between sensor fusion actors in P-ITS-S (nomadic device), V-ITS-S, R-ITS-S and C-ITS-S for seamless positioning by nomadic device. This document defines the process for coordinating and sharing PVT datasets among ITS components, including P-ITS-S, V-ITS-S, R-ITS-S, and C-ITS-S, for each specific use case. This document does not provide data security and authentication protocols.
Komitea: CEN/TC 93 (Ladders)
Alkuperä: CEN
Määräpäivä: 2026-03-19
LaajennaSupista
 
This document specifies the requirements for step stools. This includes design characteristics, dimensions, materials, performance requirements, test methods and the declaration of suitability of use. This document is not applicable to ladders and stepladders as defined by EN 131-1. NOTE This document is applicable to both side ascendable ladder type step stools with an allowable standing height up to 1 m. Both side ascendable step ladders with an allowable standing height greater than 1 m belong to the scope of in EN 131-1. This document is applicable to step stools designed for general professional and non-professional use. This document is not applicable to step stools which by their design and instructions are intended and limited only for a specific professional use and as a result are not for general professional or non-professional use. This document is not applicable to products intended for use by children falling under the scope of CEN/TC 252 "Child care articles" or toys falling under the scope of CEN/TC 52 "Safety of toys". The products are intended to be used by one person only, requirements are based upon a maximum total load of 150 kg.
Toimialayhteisö: Muoviteollisuus
Komitea: CEN/TC 107 (District heating and cooling systems)
Alkuperä: CEN
Määräpäivä: 2026-03-19
LaajennaSupista
 
This document compiles a vocabulary of terms, with their definitions, applied in the field of district heating and district cooling systems.